Tumor cell complementation groups based on myogenic potential: evidence for inactivation of loci required for basic helix-loop-helix protein activity.
نویسندگان
چکیده
Basic helix-loop-helix (bHLH) proteins mediate terminal differentiation in many lineages. By using the bHLH protein MyoD, which can dominantly activate the myogenic differentiation program in numerous cell types, we demonstrated that recessive defects in bHLH protein function are present in human tumor lines. In contrast to prior work with primary cell cultures, MyoD did not activate the myogenic program in six of the eight tumor lines we tested. Cell fusions between the MyoD-defective lines and fibroblasts restored MyoD activity, indicating that the deficiency of a gene or factor prevents bHLH protein function in the tumor lines. Fusions between certain pairings of the MyoD-defective lines also restored MyoD activity, allowing the tumor lines to be assigned to complementation groups on the basis of their ability to execute the myogenic program and indicating that multiple mechanisms exist for abrogation of bHLH protein activity. These groups provide a basis for identifying genes critical for bHLH-mediated differentiation and tumor progression by using genetic complementation.
منابع مشابه
Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators.
Activation of muscle gene transcription in differentiating skeletal myoblasts requires their withdrawal from the cell cycle. The effects of ectopic cyclin expression on activation of muscle gene transcription by myogenic basic helix-loop-helix (bHLH) regulators were investigated. Ectopic expression of cyclin D1, but not cyclins A, B1, B2, C, D3, and E, inhibited transcriptional activation of mu...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملMyoD enhances BMP7-induced osteogenic differentiation of myogenic cell cultures.
The muscle-specific, basic helix-loop-helix transcription factor MyoD can induce cells from other mesenchymal lineages to express a skeletal muscle phenotype. Interestingly, MyoD is initially upregulated in myogenic cells incubated with bone morphogenetic proteins (BMPs), a treatment that induces osteogenic differentiation, suggesting that MyoD has a role in BMP-induced osteogenesis of myogenic...
متن کاملMuscle cell differentiation is inhibited by the helix-loop-helix protein Id3.
Id3 (originally named HLH462) belongs to the Id family of the helix-loop-helix transcription factors. Members of the Id family do not contain basic DNA binding regions adjacent to the helix-loop-helix dimerization domain and are, therefore, hypothesized to act as negative regulators of other helix-loop-helix proteins by preventing the formation of functional dimers. We have investigated the pot...
متن کاملCalcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors.
The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 16 7 شماره
صفحات -
تاریخ انتشار 1996